FLAVONOIDS FOR ANTI-HYPERURICEMIA: A LITERATURE REVIEW

  • Diah Pitaloka Putri Bachelor’s Degree Study Program in Nutrition, College of Health Science of Husada Jombang
  • Kusuma Wijaya Ridi Putra Bachelor’s Degree Study Program in Nursing Science, College of Health Science of Husada Jombang
Keywords: Flavonoids, Flavonoids, Anti-Hyperuricemia, Anti-Hyperuricemia, Uric Acid, Uric Acid, Kidneys, Kidneys

Abstract

Background: Hyperuricemia is a condition on the level of uric acid in the blood increases, it is more than 6.0 mg/dL in women and more than 7.0 mg/dL in men and is currently a public health problem because of its increasing prevalence. Hyperuricemia is believed to have contributed to an increased risk of mortality and morbidity associated with various diseases such as metabolic syndrome, kidney disease, cardiovascular disease, etc. Flavonoids in plants can be used to help treat hyperuricemia due to it is believed to have low side effects. Objective: The aim of this article was to review the effect of flavonoids on plants as anti-hyperuricemia. Design: The design used in preparing this manuscript is an integrative review by reviewing articles on the impact of flavonoids as anti-hyperuricemia. Data Sources: Sources of information were obtained from research articles from 2004-2023 which were accessed through PubMed, Scopus, Sciendirect, SpringerLink, and Google Scholar. Review Methods: In the process of selecting articles to ensure the quality of the articles used in preparing this article, the authors used the PRISMA method. Results: In this article, 15 in vivo studies related to the effect of plants containing flavonoids (kaemferol, luteolin, apigenin, rutin quercetin, morin, butein, vitexin, etc.) on reducing uric acid levels by various mechanisms from previous studies. Conclusion: Based on several studies reported that flavonoids have an effect on lowering uric acid levels by inhibiting xanthine oxidase (XO) activity, affecting the expression of uric acid transporters in the kidneys which contribute to the increase of excretion of uric acid in urine.

Downloads

Download data is not yet available.

References

Abbasian, M., Ebrahimi, H., Delvarianzadeh, M., Norouzi, P., & fazli, mozhgan. (2016). Association between serum uric acid (SUA) levels and metabolic syndrome (MetS) components in personnel of Shahroud University of Medical Sciences. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 10(3), 132–136. https://doi.org/10.1016/j.dsx.2016.01.003 DOI: https://doi.org/10.1016/j.dsx.2016.01.003

Abu Bakar, F., Abu Bakar, M. F., Rahmat, A., Abdullah, N., Sabran, S. F., & Endrini, S. (2018). Anti-gout potential of Malaysian medicinal plants. Frontiers in Pharmacology, 9(MAR). https://doi.org/10.3389/fphar.2018.00261 DOI: https://doi.org/10.3389/fphar.2018.00261

Adachi, S. ichi, Kondo, S., Sato, Y., Yoshizawa, F., & Yagasaki, K. (2019). Anti-hyperuricemic effect of isorhamnetin in cultured hepatocytes and model mice: structure–activity relationships of methylquercetins as inhibitors of uric acid production. Cytotechnology, 71(1), 181–192. https://doi.org/10.1007/s10616-018-0275-8 DOI: https://doi.org/10.1007/s10616-018-0275-8

Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K., & Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9). https://doi.org/10.3390/biom9090430 DOI: https://doi.org/10.3390/biom9090430

Alberti, K. G. M. M., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., Fruchart, J. C., James, W. P. T., Loria, C. M., & Smith, S. C. (2009). Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International . Circulation, 120(16), 1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644 DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.192644

Alsultanee, I., Ewadh, M., & Mohammed, M. (2014). Novel Natural Anti Gout Medication Extract from Momdica charantia. Journal of Natural Science Research, 4(17), 16–24.

Baker, J. F., Schumacher, H. R., & Krishnan, E. (2007). Serum uric acid level and risk for peripheral arterial disease: Analysis of data from the multiple risk factor intervention trial. Angiology, 58(4), 450–457. https://doi.org/10.1177/0003319707303444 DOI: https://doi.org/10.1177/0003319707303444

Bardin, T., & Richette, P. (2014). Definition of hyperuricemia and gouty conditions. Current Opinion in Rheumatology, 26(2), 186–191. https://doi.org/10.1097/BOR.0000000000000028 DOI: https://doi.org/10.1097/BOR.0000000000000028

Benn, C. L., Dua, P., Gurrell, R., Loudon, P., Pike, A., Ian Storer, R., & Vangjeli, C. (2018). Physiology of hyperuricemia and urate-lowering treatments. Frontiers in Medicine, 5(MAY), 1–28. https://doi.org/10.3389/fmed.2018.00160 DOI: https://doi.org/10.3389/fmed.2018.00160

Bove, M., Cicero, A. F. G., & Borghi, C. (2017). The Effect of Xanthine Oxidase Inhibitors on Blood Pressure and Renal Function. Current Hypertension Reports, 19(12). https://doi.org/10.1007/s11906-017-0793-3 DOI: https://doi.org/10.1007/s11906-017-0793-3

Chen, C. J., Lü, J. M., & Yao, Q. (2016). Hyperuricemia-related diseases and xanthine oxidoreductase (XOR) inhibitors: An overview. Medical Science Monitor, 22, 2501–2512. https://doi.org/10.12659/MSM.899852 DOI: https://doi.org/10.12659/MSM.899852

Cheng, L. C., Murugaiyah, V., & Chan, K. L. (2015). Flavonoids and phenylethanoid glycosides from Lippia nodiflora as promising antihyperuricemic agents and elucidation of their mechanism of action. Journal of Ethnopharmacology, 176, 485–493. https://doi.org/10.1016/j.jep.2015.11.025 DOI: https://doi.org/10.1016/j.jep.2015.11.025

Choi, H.K., Mount, DB., Reginato, A. M. (2005). Pathogenesis of Gout. Annals of Internal Medicine, 143(7), 499–516. DOI: https://doi.org/10.7326/0003-4819-143-7-200510040-00009

Choi, H. K., & Curhan, G. (2008). Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. British Medical Journal, 336(309), 1–9. https://doi.org/10.1136/bmj.39449.819271.BE DOI: https://doi.org/10.1136/bmj.39449.819271.BE

Choi, H. K., Willett, W., & Curhan, G. (2010). Fructose-rich beverages and risk of gout in women. JAMA - Journal of the American Medical Association, 304(20), 2270–2278. https://doi.org/10.1001/jama.2010.1638 DOI: https://doi.org/10.1001/jama.2010.1638

Choi, H., Kim, H. C., Song, B. M., Park, J. H., Lee, J. M., Yoon, D. L., Yoon, Y. M., Rhee, Y., Youm, Y., & Kim, C. O. (2016). Serum uric acid concentration and metabolic syndrome among elderly Koreans: The Korean Urban Rural Elderly (KURE) study. Archives of Gerontology and Geriatrics, 64, 51–58. https://doi.org/10.1016/j.archger.2016.01.005 DOI: https://doi.org/10.1016/j.archger.2016.01.005

Choi, Y. J., Yoon, Y., Lee, K. Y., Hien, T. T., Kang, K. W., Kim, K. C., Lee, J., Lee, M. Y., Lee, S. M., Kang, D. H., & Lee, B. H. (2014). Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis. FASEB Journal, 28(7), 3197–3204. https://doi.org/10.1096/fj.13-247148 DOI: https://doi.org/10.1096/fj.13-247148

De Souza, M. R., De Paula, C. A., Pereira De Resende, M. L., Grabe-Guimarães, A., De Souza Filho, J. D., & Saúde-Guimarães, D. A. (2012). Pharmacological basis for use of Lychnophora trichocarpha in gouty arthritis: Anti-hyperuricemic and anti-inflammatory effects of its extract, fraction and constituents. Journal of Ethnopharmacology, 142(3), 845–850. https://doi.org/10.1016/j.jep.2012.06.012 DOI: https://doi.org/10.1016/j.jep.2012.06.012

Desideri, G., Castaldo, G., Lombardi, A., Mussap, M., Testa, A., Pontremoli, R., Punzi, L., & Borghi, C. (2014). Is it time to revise the normal range of serum uric acid levels? European Review for Medical and Pharmacological Sciences, 18(9), 1295–1306.

Dolati, K., Rakhshandeh, H., Golestani, M., Forouzanfar, F., Sadeghnia, R., & Sadeghnia, H. (2018). Inhibitory effects of apium graveolens on xanthine oxidase activity and serum Uric acid levels in hyperuricemic mice. Preventive Nutrition and Food Science, 23(2), 127–133. https://doi.org/10.3746/pnf.2018.23.2.127 DOI: https://doi.org/10.3746/pnf.2018.23.2.127

Dong, H., Xu, Y., Zhang, X., & Tian, S. (2017). Visceral adiposity index is strongly associated with hyperuricemia independently of metabolic health and obesity phenotypes. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-09455-z DOI: https://doi.org/10.1038/s41598-017-09455-z

Edwards, N. L. (2009). The role of hyperuricemia in vascular disorders. Current Opinion in Rheumatology, 21(2), 132–137. https://doi.org/10.1097/BOR.0b013e3283257b96 DOI: https://doi.org/10.1097/BOR.0b013e3283257b96

Ekalu, A. & H. D. (2020). Flavonoids : isolation , characterization , and health benefits. Journal of Basic and Applies Sciences, 9(45). https://doi.org/https://doi.org/10.1186/s43088-020-00065-9 DOI: https://doi.org/10.1186/s43088-020-00065-9

Förstermann, U., Xia, N., & Li, H. (2017). Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circulation Research, 120(4), 713–735. https://doi.org/10.1161/CIRCRESAHA.116.309326 DOI: https://doi.org/10.1161/CIRCRESAHA.116.309326

Gómez, M., Vila, J., Elosua, R., Molina, L., Bruguera, J., Sala, J., Masià, R., Covas, M. I., Marrugat, J., & Fitó, M. (2014). Relationship of lipid oxidation with subclinical atherosclerosis and 10-year coronary events in general population. Atherosclerosis, 232(1), 134–140. https://doi.org/10.1016/j.atherosclerosis.2013.10.026 DOI: https://doi.org/10.1016/j.atherosclerosis.2013.10.026

Grabowski, B., Khosravan, R., Wu, J. T., Vernillet, L., & Lademacher, C. (2010). Effect of hydrochlorothiazide on the pharmacokinetics and pharmacodynamics of febuxostat, a non-purine selective inhibitor of xanthine oxidase. British Journal of Clinical Pharmacology, 70(1), 57–64. https://doi.org/10.1111/j.1365-2125.2010.03667.x DOI: https://doi.org/10.1111/j.1365-2125.2010.03667.x

Grundy, S. M. (2007). Metabolic syndrome: A multiplex cardiovascular risk factor. Journal of Clinical Endocrinology and Metabolism, 92(2), 399–404. https://doi.org/10.1210/jc.2006-0513 DOI: https://doi.org/10.1210/jc.2006-0513

Gulab, K. & R. K. (2016). Serum uric acid level and obesity: An association. International Journal Healthc Sciences, 4(1), 52.

Gustafsson, D., & Unwin, R. (2013). The pathophysiology of hyperuricaemia and its possible relationship to cardiovascular disease, morbidity and mortality. BMC Nephrology, 14(1), 1–9. https://doi.org/10.1186/1471-2369-14-164 DOI: https://doi.org/10.1186/1471-2369-14-164

Haidari, F., Keshavarz, S. A., Shahi, M. M., Mahboob, S. A., & Rashidi, M. R. (2011). Effects of parsley (Petroselinum crispum) and its flavonol constituents, kaempferol and quercetin, on serum uric acid levels, biomarkers of oxidative stress and liver xanthine oxidoreductase aactivity inoxonate-induced hyperuricemic rats. Iranian Journal of Pharmaceutical Research, 10(4), 811–819. https://doi.org/10.22037/ijpr.2011.1016

Hak, A. E., Curhan, G. C., Grodstein, F., & Choi, H. K. (2010). Menopause, postmenopausal hormone use and risk of incident gout. Annals of the Rheumatic Diseases, 69(7), 1305–1309. https://doi.org/10.1136/ard.2009.109884 DOI: https://doi.org/10.1136/ard.2009.109884

Han, S., Wei, R., Han, D., Zhu, J., Luo, W., Ao, W., & Zhong, G. (2020). Hypouricemic Effects of Extracts from Urtica hyperborea Jacq. ex Wedd. In Hyperuricemia Mice through XOD, URAT1, and OAT1. BioMed Research International, 2020. https://doi.org/10.1155/2020/2968135 DOI: https://doi.org/10.1155/2020/2968135

Harwoko, H., & Warsinah, W. (2020). Phytochemical analysis and evaluation of purified extract of Tinospora crispa stem for in vivo antihyperuricemic effect. Journal of Reports in Pharmaceutical Sciences, 9(1), 46–51. https://doi.org/10.4103/jrptps.JRPTPS_45_19 DOI: https://doi.org/10.4103/jrptps.JRPTPS_45_19

Huang, J., Wang, S., Zhu, M., Chen, J., & Zhu, X. (2011). Effects of genistein, apigenin, quercetin, rutin and astilbin on serum uric acid levels and xanthine oxidase activities in normal and hyperuricemic mice. Food and Chemical Toxicology, 49(9), 1943–1947. https://doi.org/10.1016/j.fct.2011.04.029 DOI: https://doi.org/10.1016/j.fct.2011.04.029

Huo, L. N., Wang, W., Zhang, C. Y., Shi, H. B., Liu, Y., Liu, X. H., Guo, B. H., Zhao, D. M., & Gao, H. (2015). Bioassay-guided isolation and identification of xanthine oxidase inhibitory constituents from the leaves of perilla frutescens. Molecules, 20(10), 17848–17859. https://doi.org/10.3390/molecules201017848 DOI: https://doi.org/10.3390/molecules201017848

Ichida, K., Matsuo, H., Takada, T., Nakayama, A., Murakami, K., Shimizu, T., Yamanashi, Y., Kasuga, H., Nakashima, H., Nakamura, T., Takada, Y., Kawamura, Y., Inoue, H., Okada, C., Utsumi, Y., Ikebuchi, Y., Ito, K., Nakamura, M., Shinohara, Y., … Suzuki, H. (2012). Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nature Communications, 3, 4–6. https://doi.org/10.1038/ncomms1756 DOI: https://doi.org/10.1038/ncomms1756

Jang, I., Hyun, S., Shin, J., Lee, Y., Ji, J., & Lee, J. S. (2014). Characterization of an anti-gout xanthine oxidase inhibitor from Pleurotus ostreatus. Mycobiology, 42(3), 296–300. https://doi.org/10.5941/MYCO.2014.42.3.296

Jang, I. T., Hyun, S. H., Shin, J. W., Lee, Y. H., Ji, J. H., & Lee, J. S. (2014). Characterization of an anti-gout xanthine oxidase inhibitor from Pleurotus ostreatus. Mycobiology, 42(3), 296–300. https://doi.org/10.5941/MYCO.2014.42.3.296 DOI: https://doi.org/10.5941/MYCO.2014.42.3.296

Jang, M. G., Song, H., Lee, J. Y., Ko, H. C., Hur, S., & Kim, S. J. (2019). Protective effects of Sasa quelpaertensis Leaf Residue Extract against Potassium Oxonate-induced Hyperuricemia in Mice. Journal of Life Science, 29(1), 37–44. https://doi.org/10.5352/JLS.2019.29.1.37

Jiang, L. L., Gong, X., Ji, M. Y., Wang, C. C., Wang, J. H., & Li, M. H. (2020). Bioactive compounds from plant-based functional foods: A promising choice for the prevention and management of hyperuricemia. Foods, 9(8). https://doi.org/10.3390/foods9080973 DOI: https://doi.org/10.3390/foods9080973

Khanna, D. et al. (2012). ACR Guidelines: 2012 American College of Rheumatology Guidelines for Management of Gout Part I: American College of Rheumatology, 7(10), 3842–3845. https://doi.org/10.1002/acr.21772.2012

Khosla, U. M., Zharikov, S., Finch, J. L., Nakagawa, T., Roncal, C., Mu, W., Krotova, K., Block, E. R., Prabhakar, S., & Johnson, R. J. (2005). Hyperuricemia induces endothelial dysfunction. Kidney International, 67(5), 1739–1742. https://doi.org/10.1111/j.1523-1755.2005.00273.x DOI: https://doi.org/10.1111/j.1523-1755.2005.00273.x

Kodama, S., Saito, K., Yachi, Y., Asumi, M., Sugawara, A., Totsuka, K., Saito, A., & Sone, H. (2009). Association between serum uric acid and development of type 2 diabetes. Diabetes Care, 32(9), 1737–1742. https://doi.org/10.2337/dc09-0288 DOI: https://doi.org/10.2337/dc09-0288

Kuo, C. F., Grainge, M. J., Zhang, W., & Doherty, M. (2015). Global epidemiology of gout: Prevalence, incidence and risk factors. Nature Reviews Rheumatology, 11(11), 649–662. https://doi.org/10.1038/nrrheum.2015.91 DOI: https://doi.org/10.1038/nrrheum.2015.91

Kuo, C. Y., Kao, E. S., Chan, K. C., Lee, H. J., Huang, T. F., & Wang, C. J. (2012). Hibiscus sabdariffa L. extracts reduce serum uric acid levels in oxonate-induced rats. Journal of Functional Foods, 4(1), 375–381. https://doi.org/10.1016/j.jff.2012.01.007 DOI: https://doi.org/10.1016/j.jff.2012.01.007

Li, Z., Sheng, Y., Liu, C., Li, K., Huang, X., Huang, J., & Xu, K. (2016). Nox4 has a crucial role in uric acid-induced oxidative stress and apoptosis in renal tubular cells. Molecular Medicine Reports, 13(5), 4343–4348. https://doi.org/10.3892/mmr.2016.5083 DOI: https://doi.org/10.3892/mmr.2016.5083

Lin, Y., Liu, P. G., Liang, W. Q., Hu, Y. J., Xu, P., Zhou, J., Pu, J. B., & Zhang, H. J. (2018). Luteolin-4′-O-glucoside and its aglycone, two major flavones of Gnaphalium affine D. Don, resist hyperuricemia and acute gouty arthritis activity in animal models. Phytomedicine, 41, 54–61. DOI: https://doi.org/10.1016/j.phymed.2018.02.002

Liu, Hong, Zhang, X. M., Wang, Y. L., & Liu, B. C. (2014). Prevalence of hyperuricemia among Chinese adults: a national cross-sectional survey using multistage, stratified sampling. Journal of Nephrology, 27(6), 653–658. https://doi.org/10.1007/s40620-014-0082-z DOI: https://doi.org/10.1007/s40620-014-0082-z

Liu, Huifang, Xiong, J., He, T., Xiao, T., Li, Y., Yu, Y., Huang, Y., Xu, X., Huang, Y., Zhang, J., Zhang, B., & Zhao, J. (2017). High Uric Acid-Induced Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells via the TLR4/NF-kB Signaling Pathway. American Journal of Nephrology, 46(4), 333–342. https://doi.org/10.1159/000481668 DOI: https://doi.org/10.1159/000481668

Maheswari, U., Sridevi Sangeetha, K. S., Umamaheswari, S., Uma, C., Reddy, M., & Kalkura, S. N. (2016). Flavonoids Therapeutic Potential of Natural Pharmacological Agents. International Journal of Pharmaceutical Sciences and Research, 7(10), 3924. https://doi.org/10.13040/IJPSR.0975-8232.7(10).3924-30 DOI: https://doi.org/10.13040/IJPSR.0975-8232.7(10).3924-30

Merriman, T. R. (2015). An update on the genetic architecture of hyperuricemia and gout. Arthritis Research and Therapy, 17(1), 1–13. https://doi.org/10.1186/s13075-015-0609-2 DOI: https://doi.org/10.1186/s13075-015-0609-2

Mohamed Isa, S. S. P., Ablat, A., & Mohamad, J. (2018). The antioxidant and xanthine oxidase inhibitory activity of plumeria rubra flowers. Molecules, 23(2). https://doi.org/10.3390/molecules23020400 DOI: https://doi.org/10.3390/molecules23020400

Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5. https://doi.org/10.1017/jns.2016.41 DOI: https://doi.org/10.1017/jns.2016.41

Park, J.-E., Yeom, Z., Park, K.-T., Han, E. H., Yu, H. J., Kang, H. S., & Lim, Y.-H. (2018). Hypouricemic Effect of Ethanol Extract of Aster glehni Leaves in Potassium Oxonate-Induced Hyperuricemic Rats . Clinical Nutrition Research, 7(2), 126. https://doi.org/10.7762/cnr.2018.7.2.126 DOI: https://doi.org/10.7762/cnr.2018.7.2.126

Pérez-Cano, F. J., & Castell, M. (2016). Flavonoids, inflammation and immune system. Nutrients, 8(10), 8–11. https://doi.org/10.3390/nu8100659 DOI: https://doi.org/10.3390/nu8100659

Qiu, L., Cheng, X. Q., Wu, J., Liu, J. T., Xu, T., Ding, H. T., Liu, Y. H., Ge, Z. M., Wang, Y. J., Han, H. J., Liu, J., & Zhu, G. J. (2013). Prevalence of hyperuricemia and its related risk factors in healthy adults from Northern and Northeastern Chinese provinces. BMC Public Health, 13(1). https://doi.org/10.1186/1471-2458-13-664 DOI: https://doi.org/10.1186/1471-2458-13-664

Rahmi, E. P., Kumolosasi, E., Jalil, J., Husain, K., Buang, F., Amirul, A. F., & Jamal, J. A. (2020). Anti-hyperuricemic and Anti-inflammatory Effects of Marantodes pumilum as Potential Treatment for Gout. Frontiers in Pharmacology, 11(March), 1–16. https://doi.org/10.3389/fphar.2020.00289 DOI: https://doi.org/10.3389/fphar.2020.00289

Raja, S., Kumar, A., Aahooja, R. Das, Thakuria, U., Ochani, S., & Shaukat, F. (2019). Frequency of Hyperuricemia and its Risk Factors in the Adult Population. Cureus, 11(3). https://doi.org/10.7759/cureus.4198 DOI: https://doi.org/10.7759/cureus.4198

Rho, Y. H., Zhu, Y., & Choi, H. K. (2011). The Epidemiology of Uric Acid and Fructose. Seminars in Nephrology, 31(5), 410–419. https://doi.org/10.1016/j.semnephrol.2011.08.004 DOI: https://doi.org/10.1016/j.semnephrol.2011.08.004

Robinson, M. M., & Zhang, X. (2011). the World Medicines Situation 2011 Traditional Medicines : Global Situation , Issues and Challenges. World Health Organization, 3rd Edition, 1–14.

Romano, B., Pagano, E., Montanaro, V., Fortunato, A. L., Milic, N., & Borrelli, F. (2013). Novel insights into the pharmacology of flavonoids. Phytotherapy Research, 27(11), 1588–1596. https://doi.org/10.1002/ptr.5023 DOI: https://doi.org/10.1002/ptr.5023

Romi, M. M., Arfian, N., Tranggono, U., Setyaningsih, W. A. W., & Sari, D. C. R. (2017). Uric acid causes kidney injury through inducing fibroblast expansion, Endothelin-1 expression, and inflammation. BMC Nephrology, 18(1), 1–8. https://doi.org/10.1186/s12882-017-0736-x DOI: https://doi.org/10.1186/s12882-017-0736-x

Sautin, Y. Y., Nakagawa, T., Zharikov, S., & Johnson, R. J. (2007). Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. American Journal of Physiology - Cell Physiology, 293(2), 584–596. https://doi.org/10.1152/ajpcell.00600.2006 DOI: https://doi.org/10.1152/ajpcell.00600.2006

Shah, P., & Shah, G. (2015). Uricosuric activity of Tinospora cordifolia. Bangladesh Journal of Pharmacology, 10(4), 884–890. https://doi.org/10.3329/bjp.v10i4.25160 DOI: https://doi.org/10.3329/bjp.v10i4.25160

Shi, Y. W., Wang, C. P., Wang, X., Zhang, Y. L., Liu, L., Wang, R. W., Ye, J. F., Hu, L. S., & Kong, L. D. (2012). Uricosuric and nephroprotective properties of Ramulus Mori ethanol extract in hyperuricemic mice. Journal of Ethnopharmacology, 143(3), 896–904. https://doi.org/10.1016/j.jep.2012.08.023 DOI: https://doi.org/10.1016/j.jep.2012.08.023

Shi, Y., & Williamson, G. (2016). Quercetin lowers plasma uric acid in pre-hyperuricaemic males: A randomised, double-blinded, placebo-controlled, cross-over trial. British Journal of Nutrition, 115(5), 800–806. https://doi.org/10.1017/S0007114515005310 DOI: https://doi.org/10.1017/S0007114515005310

Shih, M. H., Lazo, M., Liu, S. H., Bonekamp, S., Hernaez, R., & Clark, J. M. (2015). Association between serum uric acid and nonalcoholic fatty liver disease in the US population. Journal of the Formosan Medical Association, 114(4), 314–320. https://doi.org/10.1016/j.jfma.2012.11.014 DOI: https://doi.org/10.1016/j.jfma.2012.11.014

Siciliano, T., De Tommasi, N., Morelli, I., & Braca, A. (2004). Study of flavonoids of Sechium edule (Jacq) Swartz (Cucurbitaceae) different edible organs by liquid chromatography photodiode array mass spectrometry. Journal of Agricultural and Food Chemistry, 52(21), 6510–6515. https://doi.org/10.1021/jf040214q DOI: https://doi.org/10.1021/jf040214q

Skoczyńska, M., Chowaniec, M., Szymczak, A., Langner-Hetmańczuk, A., Maciążek-Chyra, B., & Wiland, P. (2020). Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Pathophysiology of hyperuricemia and its clinical significance-a narrative review. Reumatologia, 58, 312–323. DOI: https://doi.org/10.5114/reum.2020.100140

Spanou, C., Veskoukis, A., Kerasioti, T., Kontou, M., Angelis, A., Aligiannis, N., Skaltsounis, A., & Kouretas, D. (2012). Flavonoid glycosides isolated from unique legume plant extracts as novel inhibitors of xanthine oxidase. PLoS ONE, 7(3). https://doi.org/10.1371/journal.pone.0032214 DOI: https://doi.org/10.1371/journal.pone.0032214

Storhaug, H. M., Norvik, J. V., Toft, I., Eriksen, B. O., Løchen, M. L., Zykova, S., Solbu, M., White, S., Chadban, S., & Jenssen, T. (2013). Uric acid is a risk factor for ischemic stroke and all-cause mortality in the general population: A gender specific analysis from The Tromsø Study. BMC Cardiovascular Disorders, 13. https://doi.org/10.1186/1471-2261-13-115 DOI: https://doi.org/10.1186/1471-2261-13-115

Su, J., Wei, Y., Liu, M., Liu, T., Li, J., Ji, Y., & Liang, J. (2014). Anti-hyperuricemic and nephroprotective effects of Rhizoma Dioscoreae septemlobae extracts and its main component dioscin via regulation of mOAT1, mURAT1 and mOCT2 in hypertensive mice. Archives of Pharmacal Research, 37(10), 1336–1344. https://doi.org/10.1007/s12272-014-0413-6 DOI: https://doi.org/10.1007/s12272-014-0413-6

Sui, X., Church, T. S., Meriwether, R. A., Lobelo, F., & Blair, S. N. (2008). Uric acid and the development of metabolic syndrome in women and men. Metabolism: Clinical and Experimental, 57(6), 845–852. https://doi.org/10.1016/j.metabol.2008.01.030 DOI: https://doi.org/10.1016/j.metabol.2008.01.030

Tanaka, K., Ogata, S., Tanaka, H., Omura, K., Honda, C., & Hayakawa, K. (2015). The relationship between body mass index and uric acid: a study on Japanese adult twins. Environmental Health and Preventive Medicine, 20(5), 347–353. https://doi.org/10.1007/s12199-015-0473-3 DOI: https://doi.org/10.1007/s12199-015-0473-3

Ting, K., Gill, T. K., Keen, H., Tucker, G. R., & Hill, C. L. (2016). Prevalence and associations of gout and hyperuricaemia: Results from an Australian population-based study. Internal Medicine Journal, 46(5), 566–573. https://doi.org/10.1111/imj.13006 DOI: https://doi.org/10.1111/imj.13006

Treml, J., & Šmejkal, K. (2016). Flavonoids as Potent Scavengers of Hydroxyl Radicals. Comprehensive Reviews in Food Science and Food Safety, 15(4), 720–738. https://doi.org/10.1111/1541-4337.12204 DOI: https://doi.org/10.1111/1541-4337.12204

Trifirò, G., Morabito, P., Cavagna, L., Ferrajolo, C., Pecchioli, S., Simonetti, M., Bianchini, E., Medea, G., Cricelli, C., Caputi, A. P., & Mazzaglia, G. (2013). Epidemiology of gout and hyperuricaemia in Italy during the years 2005-2009: A nationwide population-based study. Annals of the Rheumatic Diseases, 72(5), 694–700. https://doi.org/10.1136/annrheumdis-2011-201254 DOI: https://doi.org/10.1136/annrheumdis-2011-201254

Tsushima, Y., Nishizawa, H., Tochino, Y., Nakatsuji, H., Sekimoto, R., Nagao, H., Shirakura, T., Kato, K., Imaizumi, K., Takahashi, H., Tamura, M., Maeda, N., Funahashi, T., & Shimomura, I. (2013). Uric acid secretion from adipose tissue and its increase in obesity. Journal of Biological Chemistry, 288(38), 27138–27149. https://doi.org/10.1074/jbc.M113.485094 DOI: https://doi.org/10.1074/jbc.M113.485094

Van Hoorn, D. E. C., Nijveldt, R. J., Van Leeuwen, P. A. M., Hofman, Z., M’Rabet, L., De Bont, D. B. A., & Van Norren, K. (2002). Accurate prediction of xanthine oxidase inhibition based on the structure of flavonoids. European Journal of Pharmacology, 451(2), 111–118. https://doi.org/10.1016/S0014-2999(02)02192-1 DOI: https://doi.org/10.1016/S0014-2999(02)02192-1

Villegas, R., Xiang, Y. B., Elasy, T., Xu, W. H., Cai, H., Cai, Q., Linton, M. F., Fazio, S., Zheng, W., & Shu, X. O. (2012). Purine-rich foods, protein intake, and the prevalence of hyperuricemia: The Shanghai Men’s Health Study. Nutrition, Metabolism and Cardiovascular Diseases, 22(5), 409–416. https://doi.org/10.1016/j.numecd.2010.07.012 DOI: https://doi.org/10.1016/j.numecd.2010.07.012

Wang, Honggang, Wang, L., Xie, R., Dai, W., Gao, C., Shen, P., Huang, X., Zhang, F., Yang, X., & Ji, G. (2014). Association of serum uric acid with body mass index: A cross-sectional study from Jiangsu province, China. Iranian Journal of Public Health, 43(11), 1503–1509.

Wang, Hongsha, Zhang, H., Sun, L., & Guo, W. (2018). Roles of hyperuricemia in metabolic syndrome and cardiac-kidney-vascular system diseases. American Journal of Translational Research, 10(9), 2749–2763.

Wang, M., Jiang, X., Wu, W., & Zhang, D. (2013). A meta-analysis of alcohol consumption and the risk of gout. Clinical Rheumatology, 32(11), 1641–1648. https://doi.org/10.1007/s10067-013-2319-y DOI: https://doi.org/10.1007/s10067-013-2319-y

Wang, S., Fang, Y., Yu, X., Guo, L., Zhang, X., & Xia, D. (2019). The flavonoid-rich fraction from rhizomes of Smilax glabra Roxb. ameliorates renal oxidative stress and inflammation in uric acid nephropathy rats through promoting uric acid excretion. Biomedicine and Pharmacotherapy, 111(December 2018), 162–168. https://doi.org/10.1016/j.biopha.2018.12.050 DOI: https://doi.org/10.1016/j.biopha.2018.12.050

Wu, J., Lei, G., Wang, X., Tang, Y., Cheng, H., Jian, G., Wu, X., & Wang, N. (2017). Asymptomatic hyperuricemia and coronary artery disease in elderly patients without comorbidities. Oncotarget, 8(46), 80688–80699. https://doi.org/10.18632/oncotarget.21079 DOI: https://doi.org/10.18632/oncotarget.21079

Yan, J., Zhang, G., Hu, Y., & Ma, Y. (2013). Effect of luteolin on xanthine oxidase: inhibition kinetics and interaction mechanism merging with docking simulation. Food Chemistry, 141(4), 3766–3773. https://doi.org/10.1016/j.foodchem.2013.06.092 DOI: https://doi.org/10.1016/j.foodchem.2013.06.092

Yu, K. H., See, L. C., Huang, Y. C., Yang, C. H., & Sun, J. H. (2008). Dietary Factors Associated with Hyperuricemia in Adults. Seminars in Arthritis and Rheumatism, 37(4), 243–250. https://doi.org/10.1016/j.semarthrit.2007.04.007 DOI: https://doi.org/10.1016/j.semarthrit.2007.04.007

Yuan, H., Yu, C., Li, X., Sun, L., Zhu, X., Zhao, C., Zhang, Z., & Yang, Z. (2015). Serum uric acid levels and risk of metabolic syndrome: A dose-response meta-analysis of prospective studies. Journal of Clinical Endocrinology and Metabolism, 100(11), 4198–4207. https://doi.org/10.1210/jc.2015-2527 DOI: https://doi.org/10.1210/jc.2015-2527

Yuan, M., Liu, Y., Xiao, A., Leng, J., Liao, L., Ma, L., & Liu, L. (2019). The interaction of dietary flavonoids with xanthine oxidase: In vitro: Molecular property-binding affinity relationship aspects. RSC Advances, 9(19), 10781–10788. https://doi.org/10.1039/c8ra09926j DOI: https://doi.org/10.1039/C8RA09926J

Yuk, H. J., Lee, Y. S., Ryu, H. W., Kim, S. H., & Kim, D. S. (2018). Effects of toona sinensis leaf extract and its chemical constituents on xanthine oxidase activity and serum uric acid levels in potassium oxonate-induced hyperuricemic rats. Molecules, 23(12). https://doi.org/10.3390/molecules23123254 DOI: https://doi.org/10.3390/molecules23123254

Zalawadiya, S. K., Veeranna, V., Mallikethi-Reddy, S., Bavishi, C., Lunagaria, A., Kottam, A., & Afonso, L. (2015). Uric acid and cardiovascular disease risk reclassification: Findings from NHANES III. European Journal of Preventive Cardiology, 22(4), 513–518. https://doi.org/10.1177/2047487313519346 DOI: https://doi.org/10.1177/2047487313519346

Zhu, Y., Pandya, B., Choi, H. K. (2011). Prevalence of Gout and Hyperuricemia in the US General Population The National Health and Nutrition Examination Survey 2007 – 2008. Artritis and Neurematism, 63(10), 3136–3141. https://doi.org/10.1002/art.30520 DOI: https://doi.org/10.1002/art.30520

Zhu, J. X., Wang, Y., Kong, L. D., Yang, C., & Zhang, X. (2004). Effects of Biota orientalis extract and its flavonoid constituents, quercetin and rutin on serum uric acid levels in oxonate-induced mice and xanthine dehydrogenase and xanthine oxidase activities in mouse liver. Journal of Ethnopharmacology, 93(1), 133–140. https://doi.org/10.1016/j.jep.2004.03.037 DOI: https://doi.org/10.1016/j.jep.2004.03.037

Published
2024-06-08
How to Cite
Putri, D. P., & Putra, K. W. R. (2024). FLAVONOIDS FOR ANTI-HYPERURICEMIA: A LITERATURE REVIEW. Nurse and Health: Jurnal Keperawatan, 13(1), 109-126. https://doi.org/10.36720/nhjk.v13i1.635
Abstract viewed = 373 times
PDF downloaded = 150 times iThenticate Result downloaded = 41 times